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ABSTRACT
This work examines the dendritic cell algorithm (DCA) from
a mathematical perspective. By representing the signal pro-
cessing phase of the algorithm using the dot product it is
shown that the signal processing element of the DCA is ac-
tually a collection of linear classifiers. It is further shown
that the decision boundaries of these classifiers have the po-
tentially serious drawback of being parallel, severely limiting
the applications for which the existing algorithm can be po-
tentially used on. These ideas are further explored using
artificially generated data and a novel visualisation tech-
nique that allows an entire population of dendritic cells to
be inspected as a single classifier. The paper concludes that
the applicability of the DCA to more complex problems is
highly limited.

Categories and Subject Descriptors
H.1 [Models and Principles]: [General]; I.6.4 [Simulation

and Modeling]: Model Validation and Analysis

General Terms
Algorithms

1. INTRODUCTION
The dendritic cell algorithm (DCA) is a popular immune-

inspired approach for solving anomaly detection problems.
The DCA imitates the function of natural dendritic cells and
has its inspiration rooted within the danger theory [10, 11].
In recent years the DCA has been investigated from a practi-
cal perspective. This has been in the form of benchmarking
the DCA on data sets and comparing it to other classifi-
cation techniques such as self-organising maps [6]. From a
mathematical perspective however, the DCA has not been
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fully investigated and as a consequence, the underlying clas-
sification principle is poorly understood. In this paper we
demonstrate that the DCA can be represented as a collection
of linear classifiers. We justify and underpin this statement
by showing that the underlying metric is based on the dot
product. From this insight it consequently follows that the
geometrical properties of the DCA results in a collection of
linear thresholded classifiers.

For the sake of clarity we omit any biological explanation
of dendritic cells and danger theory. Explanations of these
elements can be found in [3]. The paper is structured as fol-
lows: in Section 2 the latest version of the DCA is presented.
In Section 3 properties of the dot product are summarized.
The linear classifier which is based on the dot product is
explained in Section 4. The use of linear classifiers to model
the operation of the DCA and a novel visualisation tech-
nique for exploring the DCA are explained in Section 5. In
Section 6 the results of applying artificially generated data
sets to the algorithm are presented. A final discussion and
conclusions are provided in Section 7.

2. THE DCA
The dendritic cell algorithm (DCA) is an abstraction of

the operation of biological dendritic cells. The DCA is a
developing algorithm and, as a result, there are several vari-
ants. In this paper we will consider the deterministic DCA,
presented in [4] as at the time of writing, it is the most recent
incarnation of the algorithm and lends itself easily to anal-
ysis. The DCA is a population-based algorithm. The pop-
ulation is collection of linear classifiers with their own sam-
ple memory, termed ’cells’. The DCA accepts three time-
varying streams of data as inputs: two real valued streams,
(i.e. in R) and one stream of integers, (∈ Z). These data
streams are generated by application-specific heuristics. The
’Danger’ signal is a real-valued, (0-100) signal which rises
proportionally with the ’anomalousness’ of the current situ-
ation. The ’Safe’ signal is a real-valued, (0-100) signal which
rises proportionally with the ’normality’ of the current sit-
uation. The aim is that the Safe and Danger signals are
not recipricol, so that the system can make decisions in the
presence of conflicting data. The ’Antigen’ stream is the
integer-based signal. It produces integers that attempt to
describe the problem state in a meaningful way. For clas-
sification purposes, the antigen stream is simply a list of



Figure 1: A block diagram representation of the

DCA.

identifiers that represent the items in the environment to be
classified. In other words the enumeration uniquely identi-
fies an item or state within the problem space which is to be
classified as anomalous or normal. The operation of a single
cell within the population is illustrated in Figure 1.

The signal inputs, (danger and safe) are combined using
weighted sums to generate two intermediate signals CSM
and K. The CSM signal is a measure of the overall signal
magnitudes that the cell is being exposed to. The K sig-
nal is a measure of the instantaneous difference between the
normality and anomalousness of the input data. A neg-
ative value of K indicates normality and a positive value
indicates anomalousness. The values of K and CSM are
accumulated over the cell’s lifetime. When the cumulated
CSM signal reaches a cell-specific threshold, the cell is said
to ”migrate”. The term ’migrate’ comes from the biological
dendritic cell and indicates the point in its life-cycle where
it moves from the tissue and into a lymph node. Algorithmi-
cally this means that the cell is ready to classify the antigen
that it has sampled as being normal or anomalous, based
on the signals that it has been exposed to. When the cell
migrates all of the antigen samples that it has collected are
given the same classification. Equations 1 and 2 define how
these intermediate signals are generated

CSMn = Sn + Dn (1)

Kn = Dn − 2Sn (2)

Where Dn is the current sample of the danger signal, Sn

is the current sample of the safe signal, CSMn is the current
CSM value and Kn is the current value of the K signal.

The means of collating the outputs from a population of
cells varies between versions. A comparison between two
popular collation techniques for the DCA is performed in
[1]. The most common technique is to use the ”mean context
antigen value” or MCAV [5]. This technique combines the
votes cast by every cell for a specific antigen, using a value
of 1 to indicate an anomalous classification and a value of
0 to indicate a normal classification. The MCAV can be
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Figure 2: Geometrical interpretation of the dot

product of w and the two vectors x1,x2.

calculated at set intervals to give real-time performance. As
such the value of the MCAV can be seen as the probability
that the sampled antigen are anomalous.

The population-based and signal-dependent nature of the
DCA makes it difficult to analyse using conventional tech-
niques. In [12] frequency analysis was used to characterise
the behaviour of an individual cell. However, the cells within
the population can migrate asynchronously, which makes
analysing the algorithm as a whole in the frequency domain
challenging [13].

This paper shall focus solely on the signal processing el-
ement of the DCA rather than the antigen sampling and
classification. For some applications the antigen sampling
phase is trivial, as there is a strong temporal link between
the presentation of antigen to the system and the result-
ing signal. In other words, the effects of a state change in
the problem space can be sensed almost immediately. It
must be stressed that this is not a valid assumption for all
problem types and more work is required to understand the
relationship between the antigen sampling element of the al-
gorithm and the signal processing layer for non-trivial tem-
poral matching.

3. DOT PRODUCT
In this section we summarize well known and straightfor-

ward mathematical facts of the dot product. For further
details see any textbook on linear algebra (e.g. [9]).

Given two vectors w,x ∈ R
d, the dot product1 is defined as

follows:

w
T · x =

d
X

i=1

wixi = 〈w,x〉 (3)

The dot product has a straightforward geometrical interpre-
tation, namely, the length of the projection of x onto the
unit vector w/‖w‖ (see Figure 2).

Furthermore, the dot product can be used to calculate
lengths, angles and distances.

1Also called inner product or scalar product.



Squared lengths of w:

‖w‖2 = w1w1 + w2w2 + . . . + wdwd = 〈w,w〉 (4)

Squared Euclidean distance between w and x:

‖w − x‖2 = 〈w,w〉 + 〈x,x〉 − 2〈w, x〉 (5)

Cosine angle between w and x:

cos φ =
〈w,x〉

‖w‖ ‖x‖
(6)

=
w1x1 + w2x2 + . . . + wdxd

p

w2
1 + w2

2 + . . . + w2
d

p

x2
1 + x2

2 + . . . + x2
d

.(7)

If w and x are perpendicular, then the dot product 〈w,x〉
is zero.

4. LINEAR CLASSIFIERS
Linear classifiers are well known and investigated in the

field of neural networks. We present linear classifiers from
this perspective and show that the DCA can be modelled as
a collection of linear classifiers.

A single layer neural network (also called perceptron) is pic-
tured in Figure 3(a) and corresponds to the linear discrimi-
nation function

y(x) = 〈w,x〉 + w0 (8)

where x is a d-dimensional input vector, w is d-dimensional
weight vector and w0 the bias (threshold).

The decision boundary y(x) = 0 corresponds to a (d −
1)-dimensional hyperplane in d-dimensional x-space2. The
weight vector w defines the orientation of the decision hyper-
plane, the bias w0 the position in terms of its perpendicular
distance from the origin. If w0 is zero, then the hyperplane
goes through the origin. The distance of 〈w,x〉 + w0 to the
origin is |w0|/‖w‖, the distance of 〈w,x〉+w0 to an arbitrary
point b ∈ R

d is |y(b)|/‖w‖. Moreover, weight vector w is
perpendicular to 〈w,x〉 + w0 and this consequently implies
that y(a) = 0 for any point a which lies on the hyperplane
(see Figure 3(b)).

Due to the fact that the dot product can also be in-
terpreted as the cosine angle φ between w and x, it fol-
lows that (8) separates the x-space in the two half-spaces
y(x) < 0 and y(x) > 0 (see Figure 3(b)).

4.1 Linear Data Separation
Given sample X = {(x(n), y(n))}N

n=1 from R
d × {−1, +1}.

If X is linearly separable, then there exist vector w and bias
w0 such that

y(n)(〈w,x(n)〉 + w0) ≥ 0, n = 1, 2, . . . , N. (9)

More specifically, the two parameters w and w0 have to be
inferred from X such that (9) is satisfied. This inference
problem can be solved for instance with the perceptron up-
date rule, the delta rule or by the pseudoinverse method
which gives an analytical solution [2]. If X is not linearly
separable, then the inference task can be formulated as lin-

2For d = 2 it is a straight line, for d = 3 a plane, and so on.
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(a) Representation of a single layer neu-
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Figure 3: Geometrical interpretation of a single

layer network and the corresponding linear discrim-

ination function y(x) which separates the space in

the two half-spaces y(x) < 0 and y(x) > 0.

ear Support Vector Machine separation problem

minw,w0,ξ

1

2
‖w‖2 (10)

subject to y(n)(〈w,x(n)〉 + w0) ≥ 1 − ξn, (11)

ξn ≥ 0, n = 1, 2, . . . , N,

where ξn are slack variables to relax the hard separation
constrains.

To summarize, parameters in learning algorithms for data
separation problems have to be inferred from the data, that
is, from sample X . We will see in the subsequent sections,
that parameters in the DCA are inferred in terms of specu-
lative user generated heuristics.

5. REPRESENTING THE DCA AS A COL-
LECTION OF LINEAR CLASSIFIERS

As discussed in Section 4, for typical classifier analysis
it can be instructive to view the positions of the classifi-
cation hyperplanes with respect to the input signal space.
However, the DCA does not operate on the input signals
directly, rather the sum of the signals experienced over a
given cell’s lifetime. This presents a challenge as the pop-
ulation is asynchronous and a cell can migrate at any time
relative to the rest of the population depending on its in-
put history. Conventional techniques for visualising linear



classifiers that use their input history (as opposed to their
instantaneous inputs) usually treat each sample as a new in-
put dimension. However, the number of samples a dendritic
cell analyses varies depending on signal magnitude via the
CSM gating mechanism, so the resulting space would have
varying dimensionality between cells and input magnitudes.
To overcome this challenge, rather than using the instanta-
neous input signals as axes, we can use the cumulated input
signals. In this space the algorithm becomes easier to ex-
plore.

Each cell generates two planes in this space. The first
is the decision boundary. The cell will not make a deci-
sion, (i.e. migrate) until its current decision boundary is
breached. At the first instance where the cell’s decision
boundary is breached, the point is compared to the sec-
ond plane, the classification boundary, to decide if the cell
is voting for normality or anomalousness.

The inequality defining when a cell migrates is given in
equation 12

Mi ≤

T
X

n=0

CSMn (12)

Where Mi is the migration threshold of cell i and T is the
index of the current sample. Substituting the definition for
CSMn from equation 1 into equation 12 and rearranging for
P

safe gives equation 13.

T
X

n=0

Sn = −1 ×

T
X

n=0

Dn + Mi (13)

Where
P

Sn is used as the y axis and
P

Dn is used as
the x axis. However, this only holds in the individual cell’s
frame of reference. To express equation 13 in the global
co-ordinate frame, the line must be offset by the starting
position of the cell in signal space, (xP , yP ). Equation 13
shows that all decision boundaries are parallel going from
(xP + Mi, 0), to (0, yP + Mi) with a constant gradient of -1.
The classification boundary can be defined similarly, using
the inequality in equation 14, which defines ’normality’.

T
X

n=0

Kn > 0 (14)

Substituting equation 2 and rearranging as before provides
equation 15, the classification boundary.

T
X

n=0

Sn = 0.5 ×
T

X

n=0

Dn (15)

This also gives a constant gradient, of 0.5 in this case, imply-
ing that all of the classification boundaries are also parallel.
This demonstrates that not only can an individual cell be
modelled as a linear classifier, but a population of cells is
limited to only produce those classification boundaries that
can be expressed as combinations of parallel planes.

Rearranging equations 13 and 15 into the dot product
representation for a linear classifier yields equations 16 and
17 respectively.

yD(x) = 〈WD,x〉 − Mi (16)

Where yD is the decision boundary, WD is a vector repre-
senting the weightings of the safe and danger signals towards

Figure 4: A single dendritic cell’s cumulative input

signal space.

the CSM signal and Mi is the migration threshold of the cell
being considered. For the current version of the DCA WD

is [1, 1, 1, 1, ...] and x is [Dn, Sn, Dn−1, Sn−1...] where the
length of the vectors is defined by the number of samples
required to satisfy equation 12.

yC(x) = 〈WC,x〉 (17)

Where yC is the classification boundary and WC is a vector
representing the weightings of the safe and danger signals
towards the K signal. For the current version of the DCA
WC is [1,−2, 1,−2, ...] and x is the same varying length
vector described in equation 16.

5.1 Visualising a Single Dendritic Cell
Figure 4 illustrates the visualisation of the decision bound-

ary and classification boundary for a single dendritic cell.
The x axis is the cumulated danger signal that the cell

has been exposed to and the y axis is the cumulated safe
signal that the cell has been exposed to. Each cross repre-
sents a change in input signal experienced by the cell and
the connecting solid black line represents the path through
the signal space that the algorithm’s previous inputs have
described. Note that as this is cumulative space and the
inputs are constrained to be positive, that the path is con-
strained to never move to the left or down. The black spot
represents the point at which the cell last migrated and had
its cumulated CSM and K signal reset to 0. The thin, solid
line indicates the decision boundary, the first input signal
that breaches that boundary will lead to a classification. If
the input signal causes the path to enter the white region,
(marked ’A’) the cell will classify all collected antigen as be-
ing ”safe”. Conversely, if the input signal enters the black
region, (marked ’B’) the cell will classify all collected antigen
as being ”anomalous”. These two regions are divided by the
thin, dashed line, which illustrates the classification bound-
ary for the cell. If the next signal change fails to breach the
decision boundary, no classification shall be returned by the
cell and it shall simply wait until sufficient data has been
sampled.



5.2 Visualising a Population of Dendritic Cells
In order to visualise a population of cells, it is necessary to

define how the output of the cells will be combined. For this
paper it shall be assumed that the MCAV is calculated after
every iteration. To simplify analysis, it will also be assumed
that there is only one type of antigen being classified. The
first assumption is reasonable for a real-time implementation
of the algorithm. The second assumption is not realistic in
an application sense. However, it is instructive for demon-
strating the different classification region shapes that the
cell population can construct. For the multi-cell visualisa-
tion, the same key can be used to identify the positions of the
classification and decision boundaries, but instead of a black
and white region, a grey-scale map will be produced that il-
lustrates the possible outcomes for the next signal input.
As before, black illustrates an anomalous region, (i.e. the
probability that the data is normal approaches 0) and white
illustrates a normal region, (i.e. the probability that the
data is normal approaches 1). To illustrate a population of
cells, random data shall be presented to the algorithm, with
a Gaussian distribution. By using Gaussian distributions for
both signal sources, it is hoped that the generated data will
exemplify ’normality’ for the most part, but will also pro-
duce situations where ’anomalous’ signal characteristics will
be generated at the extremes of the Gaussian curves. Two
sets of data shall be used, both with a standard deviation of
1, but the first shall use a mean of 5 and the second shall use
a smaller mean of 2. In each case a population of 100 cells
will be used, with a uniformly distributed set of migration
thresholds, ranging from 15 to 45, (a standard range for the
DCA.)

6. RESULTS
Figure 5 illustrates four steps through the algorithm, using

randomly generated input data with a mean of 5. Step five
was chosen as a starting position as it allows the algorithm
to settle into its usual operation. At step 0 all cells have
been exposed to exactly the same amount of signal (i.e. 0),
so the classification boundaries are all exactly the same.

In Figure 5(a) there are only three distinct classification
boundaries, (the dashed lines.) This is because the cells have
formed into three groups of cells. This separation is also ob-
servable by inspecting the decision boundaries, which have
clearly split into three clusters. The gaps between the deci-
sion boundary groups are formed by the magnitude of the
input data to the algorithm. Large steps cause many cells
to migrate at once. The black circles on the data path mark
the steps at which the cells that are part of the current pop-
ulation were last reset. Only three circles exist, showing that
this population has no cells older than three iterations. The
shape of the classification regions are all constructed from
an averaging of linear classification boundaries. The shad-
ing demonstrates that in certain regions the classification
is highly sensitive to change. As a result, in the boundary
between normal and anomalous, small changes in the input
signal can result in drastically different classification out-
puts. In this case it is even possible for a counter-intuitive
situation to arise, where increasing the danger signal slightly
can cause the classification to become normal. This is be-
cause cells that have been exposed to more normal signal in
their overall lifetime can be forced to migrate by either sig-
nal, and can outnumber the cells voting for anomalousness.

Figure 6: An expanded view of an example bound-

ary region. Here we can see that the classification

distribution is not gradiated, but varies significantly

for minor changes in input signal.

This is a potential source of error for the classification, as it
cannot be pre-trained or controlled, it is simply a function
of the input data. Figure 6 is an expanded view of an exam-
ple boundary region between

P

safe = 20 and
P

safe = 40.
Here it is possible to discern that the shading is not gra-
diated, but pseudo-randomly distributed, according to the
density of the overlapping decision boundaries and the pre-
vious inputs.

In Figure 5(b) many of the cells are forced to migrate as
the input signal path passes through their decision bound-
aries. All of the cells in this case classify their collected data
as normal, though this is unsurprising given that the ran-
dom input signals have equal means and that the safe signal
is weighted more heavily than the danger in the decision
making process. Note how the first and second set of cells
are pushed closer together by the migration process. This
highlights a further potential problem with the algorithm,
as the number of cells that migrate for a given input is go-
ing to be exceptionally hard to predict, as the density of
decision boundaries is going to be highly dependant on the
input data.

In Figure 5(c) the input signal fails to breach any deci-
sion boundaries. This results in the classification boundaries
staying as they are. In practical terms, this would represent
the algorithm not generating any output, and waiting to
receive more data.

Finally, in Figure 5(d), several cells migrate and widen
the ’grey area’ between normal and anomalous. The wider
region is indicative of the size of the signal that caused the
migration to occur. In other words, the width of the clas-
sification boundaries is representative of the diversity in ac-
cumulated CSM for the cells in the population.

By using a Gaussian distribution with a smaller mean the
effects of smaller input signals, relative to the selected mi-
gration thresholds can be observed. Figure 7 shows steps 5
through 8 for the algorithm, using randomly generated data
with a mean of 2.

In Figure 7(a) there are only two distinct classification
boundaries. The black spot on the origin is a sign that many
of the cells are yet to migrate. The light colour of the re-
gion at the anomalous/normal border indicates that in fact,
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Figure 5: Watching the DCA decision boundaries move. These figures illustrate the 5th, 6th, 7th and 8th

iterations of the algorithm responding to randomly generated input data. The population size is 100, and

the migration thresholds are between 15 and 45. The input data is generated using a Gaussian probability

distribution, with a mean of 5 and a standard deviation of 1.



very few cells have migrated. Again, the large width of that
region is indicative of the large distribution of accumulated
CSM within the population.

Figure 7(b) shows the input signal path moving with a gra-
dient approximately equal to the gradient of the classifica-
tion boundaries. This is the equivalent of receiving sufficient
volumes of conflicting data in the short term to cause the
certainty of the classification to drop. However, in this case,
the majority of the cells are yet to migrate, so the longer-
term view of the input signals causes the population to be
heavily biased towards a normal classification. Contrasting
the positions of the decision boundaries between Figure 7(b)
and Figure 5(b) demonstrates some of the effects of smaller
magnitudes of input data. The decision boundaries are more
clustered together, indicating that if the signal strength re-
mains at this level, the population will continue to output
classifications at a quite steady rate, rather than the more
erratic output from a larger input signal magnitude. This is
further supported by Figures 7(c) and 7(c) where each sub-
sequent presentation of input data causes an additional set
of cell migrations.

The large number of black spots in Figure 7(d) indicates
that the population has a diverse number of classification
boundaries, though they are extremely close together.

7. CONCLUSIONS
The equations defining the decision and classification bound-

aries for the DCA raise many issues with the algorithm. Pri-
marily, as a collection of linear classifiers, there are severe
limitations on the data sets that the algorithm will be able
to assess. This is made worse by the fact that the gradients
of the boundaries are constant, applying still further restric-
tions onto the regions in signal space that the algorithm can
discriminate between. It is likely that for the performance of
the DCA on complex data sets to be competitive with other
classification-based techniques that it will become necessary
to introduce non-linearity into the classification boundaries.
In contrast to learning machines where the model is inferred
from the data set, the DCA requires the user to construct
a model apriori to fit the hard coded weights. However, as
with all expert system solutions, the optimal separation for
the problem is unlikely to be found by the user. An alter-
native to this is discussed in [7]. In this work, the author
suggests that a kernel method could be introduced to the
DCA to expand the possible regions in signal space that
could be discriminated between. This would in itself be
challenging, as parameterising the appropriate kernel would
be a non-trivial task. This overcomes the limitation of the
achievable classification shapes, but not the issues associ-
ated with requiring the user to generate the model. In fact,
this task is made more difficult through the introduction of
non-linearity.

In this paper a novel visualisation technique for exploring
the DCA was suggested. The technique has made it possible
to make predictions about how the algorithm will react to
input data. It also makes it possible for inferences about the
flow of data and the shape of the classification boundaries
to be made. For the first time it is possible to predict signal
combinations that will result in the algorithm’s behaviour
becoming highly sensitive to subtle changes in signal mag-
nitude, and in the future may facilitate better tuning of the
algorithm based on test data. The visualisation technique
also makes it possible to comment on the diversity of the

population and how that impacts on the classification for a
given sample of input data. In short, the technique allows
a deeper insight into the families of problems for which the
DCA is an appropriate tool.

More insight into the algorithm could potentially be gained
by applying the visualisation technique to real data from an
application where the DCA has had success. Comparing this
with a modified, non-linear version of the algorithm could
potentially yield a more powerful addition to the field of ar-
tificial immune systems. However, it would be important to
benchmark this solution against an established non-linear
classifier, such as the kernel perceptron (for details see [8]).
Such a comparison would have to be highly favourable to
justify the increased effort associated with hand tuning the
model.
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Figure 7: Watching the DCA decision boundaries move. These figures illustrate the 5th, 6th, 7th and 8th

iterations of the algorithm responding to randomly generated input data. The population size is 100, and

the migration thresholds are between 15 and 45. The input data is generated using a Gaussian probability

distribution, with a mean of 2 and a standard deviation of 1.


